Second Semester B.A./B.Sc. Degree Examinations, September/October 2021

(CBCS – Freshers and Repeaters)

Paper II - MATHEMATICS

Time: 3 Hours

[Max. Marks: 70

Instructions to Candidates: Answer ALL Parts.

PART - A

1. Answer any **FIVE** questions:

 $(5\times2=10)$

- (a) On the set Z, * is defined by a*b=a+b+2, $\forall a,b\in Z$, find the identity element.
- (b) Prove that in a group G, $(a^{-1})^{-1} = a$, $\forall a \in G$.
- (c) Find the angle between the radius vector and the tangent to the curve $r = a e^{\theta \cot \alpha}$.
- (d) Find the polar subtangent for the curve $r = a \sec 2\theta$.
- (e) Find the asymptotes parallel to coordinate axes to the curve $x^2y^2 a^2x^2 = a^2y^2$.
- (f) Find $\frac{ds}{dx}$ for the curve $y^2 = 4ax$.
- (g) Verify the exactness of the equation $(e^y + 1)\cos x \, dx + e^y \sin x \, dy = 0$.
- (h) Find the general solution of the equation $y = 3px + p^2y^2$.

PART - B

Answer **ONE** full question :

 $(1\times15=15)$

- 2. (a) If Q^+ is the set of all positive rationals, prove that $(Q^+,*)$ is an Abelian group where * is defined by $a*b = \frac{2ab}{3}$, $\forall a,b \in Q^+$.
 - (b) Show that set of all cube roots of unity forms an Abelian group with respect to multiplication
 - (c) Prove that a non-empty subset H of a group (G, *) is a subgroup of G if and only if $\forall a, b \in H$, $a * b^{-1} \in H$.

- 3. (a) Prove that identity element of a group is unique.
 - (b) Prove that $H = \{1, 2, 4\}$ is a subgroup of the group $G = \{1, 2, 3, 4, 5, 6\}$ under multiplication modulo 7.
 - (c) In a set $S = \{a, b, c, d\}$, if $f = \begin{pmatrix} a & b & c & d \\ b & a & d & c \end{pmatrix}$ and $g = \begin{pmatrix} a & b & c & d \\ c & d & a & b \end{pmatrix}$ then find $f \circ g$, $g \circ f$ and $f^{-1} \circ g^{-1}$.

PART - C

Answer any TWO full questions:

 $(2 \times 15 = 30)$

- 4. (a) With usual notations, prove that $\tan \phi = r \frac{d\theta}{dr}$ for the polar curve $r = f(\theta)$.
 - (b) Show that the curves $r = a(1 + \cos \theta)$ and $r = b(1 \cos \theta)$ intersect orthogonally.
 - (c) Find the pedal equation of the curve $r^n = a^n \cos n \theta$.

Or

- 5. (a) Find the angle between the curves $r = a(1 \cos \theta)$ and $r = 2a \cos \theta$.
 - (b) Derive the formula for radius of curvature in parametric form.
 - (c) Find the coordinates of the centre of curvature at the point (x,y) on the curve $y^2 = 4ax$.
- 6. (a) Find the position and nature of the double points of the curve.

$$x^3 - y^2 - 7x^2 + 4y + 15x - 13 = 0$$

(b) Find all the asymptotes of the curve

$$x^3 + 2x^2y + xy^2 - x^2 - xy + 2 = 0$$

(c) Find the perimeter of the cardioide $r = a(1 + \cos \theta)$.

- 7. (a) Show that the envelope of the family of lines $\frac{x}{a} + \frac{y}{b} = 1$ where $ab = c^2$ is $4xy = c^2$.
 - (b) Find the surface area of the solid generated by revolving about the y-axis the curve $x = y^3$ from y = 0 to y = 2.
 - (c) Find the volume of the solid generated by revolving the astroide $x^{2/3} + y^{2/3} = a^{2/3}$ about the *x*-axis.

PART - D

Answer any ONE full question :

 $(1 \times 15 = 15)$

- 8. (a) Solve: $\frac{dy}{dx} + \frac{2}{x}y = x^3$.
 - (b) Verify for exactness and solve $(2xy + 3y)dx + (x^2 + 3x)dy = 0$.
 - (c) Find the general and singular solution of $\sin px \cos y \cos px \sin y = p$.

Or

- (a) Solve: $\frac{dy}{dx} \frac{y}{x} = y^2$.
- (b) Solve: $xp^2 + (y-x)p y = 0$.
- (c) Find the orthogonal trajectories of the family of parabolas $y = ax^2$, where a is a parameter.