INTRODUCTION TO ORGANIC CHEMISTRY

INTRODUCTION

- Organic chemistry is the study of organic compounds.
- Organic chemistry is all around us.

There are two main classes of chemical compounds

- 1.Organic compounds
- 2.Inorganic compounds
- In early 1800s by Jon Jacob Berzelius a Swedish chemist proposed the "VITAL FORCE THEORY"

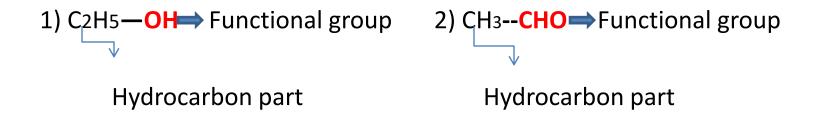
 In 1828, FREDERICH WOHLER a German chemist first synthesized the organic compound –UREA using ammonium cyanate obtained from inorganic compound.

- Hennel synthesized Ethyl alcohol
- Kolbe synthesized Acetic acid
- Berthelot synthesized Methane
- The vital force theory was finally disproved in 1850

MODERN DEFINITION OF ORGANIC CHEMISTRY

Organic chemistry is the study of **CARBON COMPOUNDS**.

Why organic chemistry is studied as a separate branch:


- 1. Large number of organic compound
- 2. Unique chemical and physical properties
- 3. Unique character of carbon (Catenation)

FUNCTIONAL GROUP

An atom or group of atoms that determines the property of an compound.

Organic compound can be divide into two parts

- Reactive part --- Functional group (Action group)
- 2. Hydrocarbon part--- Alkyl or Aryl group (Inert group)

CLASSIFICATION

The organic compounds are classified into five main classes

- 1. Aliphatic compound
- 2. Saturated and Unsaturated compound
- 3. Aromatic compound
- 4. Alicyclic compound
- 5. Heterocyclic compound

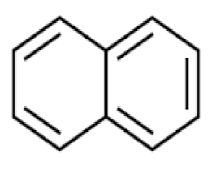
1. Aliphatic Compounds

These are the compound which contains open chain structure of carbon atom. There is no limit for number of carbon atom.

Example: Ethane, Butane and Ethyl alcohol etc

2. Saturated and Unsaturated Compounds

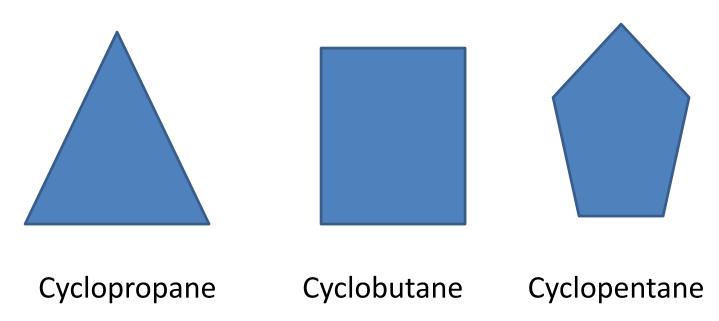
Compounds which contain only carbon and hydrogen are called Hydrocarbons. A hydrocarbon is said to be saturated if it contains only carbon carbon single bonds. A hydrocarbon is said to be unsaturated if it contains carbon carbon double or triple bonds.


Example: Ethane, Ethene and Ethyne

3.Aromatic Compounds

Compounds containing at least one benzene ring in it.

Example: Benzene, Phenol, Aniline and Naphthalene.

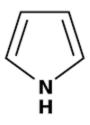

Benzene phenol Naphthalene

4. Alicyclic Compounds

Cyclic compounds which consist only of carbon atoms are called alicyclic or carbocyclic compounds.

Example: Cyclopropane, cyclobutane and cyclopentane

5. Heterocyclic Compounds


Cyclic compounds in which carbon atom of the ring is replaced by an hetero atoms like (N,S,O) etc.

Example: Pyrrole, Furan and Ethylene oxide

Pyrrole

Furan

Ethylene oxide

NOMENCLATURE OF ORGANIC COMPOUND

Nomenclature means NAMING.

There are two systems of naming

- 1. Trivial System
- 2. IUPAC System

Trivial System

In early days, new compound was given an individual name based on the source or some property or history. Example- Formic acid and acetic acid.

IUPAC System

This system of naming is based on the structural information of the compound. In 1892- "GENEVA SYSTEM" – International Congress of Chemists (New Geneva) In 1930-"IUC SYSTEM" – International Union of Chemist (Belgium) In 1958-"IUPAC SYSTEM" – International Union of Pure and Applied Chemistry.

The final form of rules for naming an organic compound was published by IUPAC in the year 1967.

The **IUPAC** name of a compound contains three parts

- Root word
- 2. A Suffix
- 3. A prefix

1.ROOT WORD

This is the basic unit of the IUPAC system. It indicates the number of carbon atoms in the longest chain/ ring of carbon atoms. Depending upon the number of carbon atoms, the root words are given. The first four members of the series are known by their common names; Methane, Ethane, Propane and Butane. Higher alkanes have their names derived from Greek prefix based on carbon atoms in the molecule.

Number of carbon atoms	Prefix
1	Meth
2	Eth
3	Prop
4	But
5	Pent
6	Hex
7	Hept
8	Oct
9	Non
10	Dec

2. A Suffix

To the root word a suffix is added to indicate the functional group present in the compound.

Class of organic compound	Functional group	Suffix
Alkane	C-C	-ane
Alkene	>C=C<	-ene
Alkyne	-C≡C-	-yne
Alcohol	-OH	-ol
Aldehyde	-СНО	-al
Ketone	>C=O	-one
Carboxylic acids	-СООН	-oic acid
Amines	-NH ₂	-amine

3. A Prefix

Is added before the root word. A prefix is a substituent group, other than hydrogen, that completes the molecular structure.

Substituent group	Formula	Prefix
Alkyl/Aryl	-R/Ar	Alkyl/aryl
Halides	-X	Halo
Chlorine	-CI	Chloro
Bromine	-Br	Bromo
lodine	-l	Iodo
Hydroxy	-OH	Hydroxy
Nitro	-NO2	Nitro
Amine	-NH2	amino

PREFIX+ROOT WORD+SUFFIX= IUPAC NAME