Differential Equations

Jeevitha N
Department of Mathematics

Introduction

Differential equation: An equation which involves independent variable, dependent variable and derivative of dependent variable with respect to independent variable is known as differential equation.

Ex:
$$\frac{dy}{dx} + x^2y = x$$
, $y\frac{dy}{dx} = x$

Order of a differential equation: Order of a differential equation is defined as the order of the highest derivative involved in the differential equation.

Ex: 1.
$$\frac{dy}{dx} + x^2y = x$$
, order = 1

2.
$$\frac{d^2y}{dx^2} + x^2 \frac{dy}{dx} = 0$$
, order = 2

Degree of a differential equation: Degree of a differential equation is defined as the integral power of the highest order derivative involved in the equation.

Ex:

1.
$$x^2 \frac{dy}{dx} + xy = y$$
, $degree = 1$

2.
$$\left(\frac{d^3y}{dx^3}\right)^2 + y\left(\frac{dy}{dx}\right)^3 = x^2$$
, $degree = 2$

order
$$\left(\frac{d^3y}{dx^3}\right)^{\frac{2}{1}} + y\left(\frac{dy}{dx}\right)^3 = x^2,$$
degree

Methods of solving first order and first degree differential equations

- Variable separable
- Homogeneous equation
- Linear differential equation
- Equations reducible to linear form
- Exact equations

Variable separable:

A first order differential equation $\frac{dy}{dx} = f(x,y)$ is called a separable equation if the function f(x, y) can be factored into the product of two functions of x and y i.e., f(x,y) = p(x)h(y) where p(x) and h(y) are continuous functions.

Considering

$$\frac{dy}{dx} = p(x)h(y) \implies \frac{dy}{h(y)} = p(x)dx$$
 (separating the variables)

On integration,

$$\int \frac{dy}{h(y)} = \int p(x)dx + c \quad \text{where 'c' is integration constant}$$

$$H(y) = P(x) + c$$

This represents the general solution of the differential equation

Ex: 1. solve $y \frac{dy}{dx} - x = 0$ by separating variables

$$y\frac{dy}{dx} - x = 0$$

$$y \frac{dy}{dx} = x$$

$$\longrightarrow$$
 $ydy = xdx$

On integrating,

$$\int y dy = \int x dx + \frac{c}{2}$$
 integration constant

$$\frac{y^2}{2} = \frac{x^2}{2} + \frac{c}{2}$$

$$y^2 = x^2 + c$$
 is the required solution.

Homogeneous Differential Equation

A first order differential equation $\frac{dy}{dx} = f(x, y)$ is called homogeneous equation, if f(x, y) is a homogeneous function of the zero order.

A homogeneous equation can be solved by substituting y = ux (where u is a new function depending on x) which leads to a separable differential equation. On solving using separable method the general solution is obtained.

Ex: Solve the differential equation (2x + y)dx - xdy = 0

Soln:
$$\frac{dy}{dx} = \frac{2x + y}{x}$$

Here $f(x,y) = \frac{2x + y}{x}$ is a homogeneous function of zero order

put
$$y = ux$$
,

$$\longrightarrow dy = d(ux) = udx + xdu$$

Substituting this into the differential equation, we obtain

$$\longrightarrow$$
 $(2x + ux)dx - x(udx + xdu) = 0$

$$\Longrightarrow 2xdx + uxdx - uxdx - x^2 du = 0$$

Dividing both sides by x gives:

$$\longrightarrow xdu = 2dx$$

Separating the variables
$$\longrightarrow du = \frac{2}{x}dx + c$$

On integrating,
$$\int du = \int \frac{2}{x} dx + c$$

$$\longrightarrow u = 2logx + c$$

Substituting
$$u = \frac{y}{x}$$
 we get $y = 2x \log x + cx$

Which is the required solution

Linear Differential Equation

A differential equation of type $\frac{dy}{dx} + P(x)y = Q(x)$ where P(x) and Q(x) are functions of x or constants, is called a linear differential equation of first order.

using Integrating factor(IF) method, we obtain the solution i.e., IF = $e^{\int pdx}$ and solution is given by

$$y(IF) = \int Q(x)(IF)dx + c$$

Ex : solve $\frac{dy}{dx} + \frac{2}{x}y = x^3$

Soln: The given equation is of the form $\frac{dy}{dx} + P(x)y = Q(x)$

Here $P(x) = \frac{2}{x}$ and $Q(x) = x^3$

Integrating factor IF = $e^{\int p dx} = e^{\int \frac{2}{x} dx} = e^{2logx} = e^{logx^2} = x^2$ Hence the general solution is

$$y(x^{2}) = \int x^{3}x^{2}dx + c$$

$$yx^{2} = \int x^{5}dx + c$$

$$yx^{2} = \frac{x^{6}}{6} + c \text{ or } y = \frac{x^{4}}{6} + \frac{c}{x^{2}} \text{ is the required solution}$$

Bernoulli's Equation(Reducible to linear)

An equation of the form $\frac{dy}{dx} + P(x)y = Q(x)y^n \dots (1)$ (n \neq 0, n \neq 1) where P and Q are Constants or functions of x alone is called Bernoulli Equation.

Dividing (1) throughout by
$$y^n$$
, we get $y^{-n} \frac{dy}{dx} + Py^{1-n} = Q$

Put
$$y^{1-n} = v$$
 then $(1-n)^{n}y^{-n}\frac{dy}{dx} = \frac{dv}{dx}$ and equation (2) becomes $\frac{1}{1-n}\frac{dv}{dx} + Pv = Q$ or $\frac{dv}{dx} + P(1-n)v = Q(1-n)....$ (3)

This a linear equation with v as the dependent variable and may be solved by finding integrating factor.

Ex: 1. Solve
$$\frac{dy}{dx} - \frac{y}{x} = y^2$$

Soln: The given equation is Bernoulli's equation. Dividing throughout by y^2

Put
$$\frac{1}{y^2} \frac{dy}{dx} - \frac{y^{-1}}{x} = 1 \text{ or } y^{-2} \frac{dy}{dx} - \frac{1}{x} y^{-1} = 1$$

$$y^{-1} = v \text{ so } that - y^{-2} \frac{dy}{dx} = \frac{dv}{dx}$$
so
$$-\frac{dv}{dx} - \frac{1}{x}v = 1 \text{ or } \frac{dv}{dx} + \frac{1}{x}v = -1 \text{ (linear equation)}$$
Here
$$P = \frac{1}{x} \qquad Q = -1$$

Integrating factor, $e^{\int Pdx} = e^{\int \frac{1}{x}dx} = e^{\log x} = x$

solution is given by
$$vx = \int (-1)(x)dx + c$$

$$vx = -\frac{x^2}{2} + c \quad or \quad y^{-1}x = -\frac{x^2}{2} + c$$

2. Solve
$$\frac{dy}{dx} - 2ytanx = y^2 tan^2 x$$

Soln: Dividing throughout by y^2 , $y^{-2} \frac{dy}{dx} - 2y^{-1}tanx = \tan^2 x$ put $y^{-1} = v$ so that $-y^{-2} \frac{dy}{dx} = \frac{dv}{dx}$

$$\therefore -\frac{dv}{dx} - 2vtanx = \tan^2 x$$

$$\frac{dv}{dx} + 2vtanx = -\tan^2 x$$

where P = 2tanx $Q = -tan^2 x$

IF
$$e^{\int pdx} = e^{\int 2tanxdx} = e^{2logsecx} = e^{logsec^2x} = \sec^2 x$$

 $\therefore vsec^2x = -\int \tan^2 x \sec^2 x \, dx + c$
 $\therefore vsec^2x = -\frac{\tan^3 x}{3} + c$

$$\therefore \frac{1}{y} sec^2 x = -\frac{\tan^3 x}{3} + c \quad \text{is the solution}$$

Exact Differential Equation

A differential equation of the type $M(x,y)dx + N(x,y)dy = 0 \dots (1)$ is said to be an exact differential equation iff $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ and solution is given by

 $\int_{y \text{ constant}} Mdx + \int (terms \text{ of } N \text{ independent of } x)dy = constant$

Ex: Solve $(2xy + 3y)dx + (x^2 + 3x)dy = 0$

Soln: Here M = 2xy + 3y and $N = x^2 + 3x$

$$\frac{\partial M}{\partial y} = 2x + 3 \quad \frac{\partial N}{\partial x} = 2x + 3$$

So that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ and hence the equation is exact

 $\therefore \text{ Solution is } \int_{y \text{ constant}} Mdx + \int (terms \text{ of } N \text{ independent of } x)dy = constant$

That is
$$\int (2xy + 3y)dx + \int (0)dy = c$$

$$2y \frac{x^2}{2} + 3yx = c \text{ or } x^2y + 3xy = c \text{ is the required solution}$$

2. Solve
$$(2x\log y)dx + \left(\frac{x^2}{y} + 3y^2\right)dy = 0$$

Soln:

Here
$$M = (2xlogy)$$
 and $N = \left(\frac{x^2}{y} + 3y^2\right)$
$$\frac{\partial M}{\partial y} = 2x \cdot \frac{1}{y} \quad \frac{\partial N}{\partial x} = \frac{2x}{y}$$

So that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ and hence the equation is exact

∴ General solution is
$$\int_{y \text{ const}} (2x \log y) dx + \int (3y^2) dy = c$$
∴ $x^2 \log y + y^3 = c$