

SDCMT201

II Semester B.Sc. Examination, June/ July - 2025

(SEP, Scheme)

MATHEMATICS

Mathematics-II

Time : 3 Hours

Maximum Marks : 80

Instructions to Candidates:

Answer all Parts.

PART - A

I. Answer any Ten of the following. (10×2=20)

1. On Q^+ , $*$ is defined by $a * b = \frac{ab}{2}$, find the identify element.
2. Define a group.
3. Find the number of generators of the cyclic group of order 24.
4. Find the right hand limit of the function $f(x) = x \sin\left(\frac{1}{x}\right)$ as x tends to 0.
5. State Cauchy's mean value theorem.
6. Evaluate $\lim_{x \rightarrow 0} \left(\frac{(1+x)^n - 1}{x} \right)$.
7. Write the relation between the cartesian and polar coordinates.
8. Find $\frac{ds}{dx}$ for the curve $y^2 = 4ax$.

[P.T.O.]

(2)

SDCMT201

9. Find the asymptotes parallel to the coordinate axes for the curve $\frac{a^2}{x^2} + \frac{b^2}{y^2} = 1$.

10. Evaluate $\int_C (x+y) dx + (y-x) dy$ along the parabola $y^2 = x$ from (1, 1) to (4, 2).

11. Evaluate $\int_0^1 \int_0^2 (x+y) dx dy$.

12. Evaluate $\int_0^1 \int_0^2 \int_0^3 dx dy dz$.

PART - B

II. Answer any Three of the following. (3×5=15)

1. If Q^+ is the set of all positive rationals, prove that $(Q^+, *)$ is an abelian group,

where $*$ is defined by $a * b = \frac{2ab}{3}$.

2. Prove that in a group $(G, *)$; $(a * b)^{-1} = b^{-1} * a^{-1}$, $\forall a, b \in G$.

3. Prove that in a group G , $O(a) = O(a^{-1})$, $\forall a \in G$.

4. Find all the right and left cosets of the subgroup $H = \{1, 3, 9\}$ of the group $(Z_{13} - \{0\}, \otimes_{13})$.

5. State and prove Lagrange's theorem.

[P.T.O.]

(3)

SDCMT201**PART - C****III. Answer any Three of the following. (3×5=15)**

1. Prove that every function defined and continuous on a closed interval is bounded.

2. Examine the differentiability at $x = 1$ of the function $f(x)$ defined by

$$f(x) = \begin{cases} x^2, & \text{if } x \leq 3 \\ 6x - 9, & \text{if } x \geq 3 \end{cases} \text{ at } x = 3.$$

3. Verify Rolle's theorem for the function $f(x) = x^2 - 6x + 8$ in the interval $[2, 4]$.

4. State and prove Lagrange's mean value theorem.

5. Evaluate $\lim_{x \rightarrow 0} \left(\frac{\tan x - x}{x^2 \tan x} \right)$.**PART - D****IV. Answer any Three of the following. (3×5=15)**1. With usual notations, prove that $\tan \phi = r \frac{d\theta}{dr}$.2. Find the Pedal equation of the curve $r^n = a^n \sin n\theta$.

3. Derive the formula for the radius of curvature in cartesian form.

4. Find the asymptotes of the curve $2x^3 - x^2y - 2xy^2 + y^3 - 4x^2 + 8xy - 4x + 1 = 0$.5. Find the position and nature of the double points of the curve $x^3 + y^3 = 3axy$.

(4)

SDCMT201**PART - E**

V. Answer any Three of the following. (3×5=15)

1. Evaluate $\int_C (x+2y)dx + (4-2x)dy$ around the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ in the counter clockwise direction.

2. Evaluate $\int_C (x+y+z)ds$ where C is the line joining the points (1, 2, 3) and (4, 5, 6).

3. Evaluate $\iint_R y dx dy$ where R is the region bounded by the parabolas $y^2 = 4ax$ and $x^2 = 4ay$.

4. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by double integration.

5. Evaluate $\int_0^a \int_0^{\sqrt{a^2-x^2}} \int_0^{\sqrt{a^2-x^2-y^2}} xyz dx dy dz$.

