11. a) Solve by Gauss-Jacobi method,

$$x + y + 54z = 110$$
, $27x + 6y - z = 85$, $6x + 15y + 2z = 72$

- b) Find the largest eigen value of $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ by power method.
- 12. a) Use Taylor's series method to find y(1.1) considering the terms up to third degree. Given that $\frac{dy}{dx} = x + y$, y(1) = 0.
 - b) Using modified Euler's method to compute y(0.1) given $\frac{dy}{dx} = x^2 + y$, y(0) = 1 taking h = 0.05.

OR

- 13. a) Using modified Euler's method find y(0.1), given $\frac{dy}{dx} = x^2 + 1$, y(0) = 1.
 - b) Using Runge-Kutta method, solve $\frac{dy}{dx} = 3x + \frac{y}{2}$ with y(0) = 1, compute y(0.2) taking h = 0.2.

VI Semester B.A./B.Sc. Examination, September 2020 (CBCS) (F + R) (2016-17 and Onwards) MATHEMATICS (Paper – VIII)

Time: 3 Hours Max. Marks: 70

Instruction: Answer all Parts.

 $(5 \times 2 = 10)$

- 1. Answer any five questions.
 - a) Evaluate $\lim_{z \to -2i} \frac{(2z+3)(z-1)}{z^2-2z+4}$
 - b) Show that $f(z) = z^2 + 2z$ is continuous at 1 + i.
 - c) Show that $u = x^3 3xy^2$ is harmonic.
 - d) Define Bilinear transformation.
 - e) Verify Cauchy-Reimann equations for $f(z) = \sin x \cosh y + i \cos x \sinh y$.
 - f) State Liouville's theorem.
 - g) Find the real root of the equation $x^3 2x 5 = 0$ in (2, 3) with two iterations by Regula-Falsi method.
 - h) Write iterative formula for Runge Kutta method of fourth order.

PART - B

Answer four full questions.

 $(4 \times 10 = 40)$

- 2. a) Find locus of the point z satisfying $\left|\frac{z-1}{z+i}\right| \ge 2$.
 - b) State and prove necessary conditions for a function f(x, y) = u(x, y) + iv(x, y) to be analytic.

OR

- 3. a) Prove that $\lim_{z\to 0} \left(\frac{\overline{z}}{z}\right)$ does not exist.
 - b) Show that $f(z) = \sin z$ is analytic and hence find f'(z).

- 4. a) Find the analytic function f(z) = u + iv given that $u = e^{x}(x\cos y y\sin y)$.
 - b) If f(z) = u + iv is an analytic function in the domain of a complex plane, then prove that $u(x, y) = C_1$ and $v(x, y) = C_2$ are orthogonal families where C_1 and C_2 are constants.

OR

- 5. a) If f(z) = u + iv is analytic, then show that $\left[\frac{\partial}{\partial x} \left| f(z) \right| \right]^2 + \left[\frac{\partial}{\partial y} \left| f(z) \right| \right]^2 = \left| f'(z) \right|^2$.
 - b) Show that $u = x^2 y^2 + x + 1$ is harmonic function and find its harmonic conjugate.
- 6. a) Evaluate $\int_{(0,3)}^{(2,4)} (2y + x^2) dx + (3x y) dy$, along x = 2t, $y = t^2 + 3$.
 - b) If f(z) is analytic inside and on a simple closed curve 'C' and if 'a' is a point within 'C', then prove that $f(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z-a} dz$.

OR

- 7. a) Evaluate $\int_{C} \frac{1}{z(z-1)} dz$, where C is the circle |z| = 3.
 - b) State and prove Cauchys integral theorem.
- 8. a) Show that the bilinear transformation transforms circles into circles or straight lines.
 - b) Discuss the transformation $w = \sin z$.

OR

- 9. a) Find the bilinear transformation which maps the points z = 1, i, -1 to w = i, 0, -i.
 - b) Prove that the bilinear transformation preserves the cross ratio of four points.

PART - C

Answer two full questions.

 $(2 \times 10 = 20)$

- 10. a) Use Bijection method in four stages to find a real root of the equation $x^3 2x 5 = 0$.
 - b) Using Newton-Raphson method, find the real root of $x^3 + 5x 11 = 0$ near 1 correct to 3 decimal places.

OR