

15. When target lithium (₃Li⁷) of thickness 0.01 mm is bombarded with a beam of intensity.

 10^{13} protons per second. As a result 10^8 neutrons are produced calculate the cross-section of the reaction in barn. Given density of lithium = 500 kg m $^{-3}$. $m_{\rm p}=1.66\times10^{-27}$ kg.

16. Verify whether the following reaction are allowed or forbidden.

 $P + P \rightarrow n + P + \Pi^{+}$ using conservation laws.

PART - C

Answer any five of the following questions. Each question carries two marks.

 $(5 \times 2 = 10)$

- 77. a) Does Bohr Magneton have any physical significance? Explain.
 - b) Are doublets observed in alkali spectra? Explain.
 - c) Are rotational spectra observed in the microwave region? Explain.
 - d) Are most energetic α -emitters long lived ? Explain.
 - e) Is quenching necessary in a GM counter? Explain.
 - f) Vacuum chamber in Betatron is coated with silver? Comment.
 - g) Does conservation of linear momentum in nuclear scattering imply conservation of kinetic energy? Explain.
 - h) Is photon an elementary particle? Explain.

VI Semester B.Sc. Examination, September 2020 (CBCS) (Fresh + Repeaters) (2018-19 and Onwards) PHYSICS – VII Atomic, Molecular and Nuclear Physics

Time: 3 Hours

Max. Marks: 70

Instructions: 1) Answer any five questions from each Part.

2) Use of non-programmable scientific calculator are allowed.

PART - A

Answer any five of the following questions. Each question carries eight marks. (5×8=40)

- 1. a) Explain the concept of spinning electron.
 - b) Write a brief note on spectral terms and their notations.

(3+5)

- 2. a) Describe with relevant theory Stern-Gerlach experiment. Give its significance.
 - b) Distinguish between normal and anomalous Zeeman effect.

(6+2)

- 3. a) What are Molecular spectra? Obtain an expression for energies of vibrational levels and show that they are equally spaced.
 - b) Distinguish between Rayleigh scattering and Raman scattering.

(6+2)

- 4. a) State any two assumptions of Rutherford's theory of α -particle scattering.
 - b) Give the theory of successive disintegration of a radioactive substance and hence discuss the transient equilibrium. (2+6)
- 5. a) What is range of an alpha-particle? Write the relation between the range and energy of α -particles.
 - b) Explain the different types of beta-decay with an example for each.
- 6. a) What is proportional counter?

b) Describe the working of a linear accelerator with a neat diagram and necessary theory. (1+7)

P.T.O.

(2+6)

- 7. a) Derive an expression for Q-value of nuclear reactions using the energy-momentum conservation.
 - b) Distinguish between direct nuclear reactions and compound nuclear reactions. (6+2)
- 8. a) Write a brief note on exact conservation laws obeyed by elementary particles.
 - b) Give any two properties of quarks.

(6+2)

PART - B

Solve any five of the following problems. Each problem carries four marks. (5×4=20)

- 9. Obtain \overrightarrow{L} . \overrightarrow{S} interms of L, S and J. Find the possible values of \overrightarrow{L} . \overrightarrow{S} for L = 1 and S = $\frac{1}{2}$.
- 10. Calculate the frequencies of the adjacent lines in normal Zeeman effect, if the frequency of the central line is $4.30 \times 10^{14} \, \text{H}_2$ and the magnetic field applied is 5T. Given e/m = $1.76 \times 10^{11} \, \text{C kg}^{-1}$ and c = $3 \times 10^8 \, \text{ms}^{-1}$.
- 11. In an experimental study of Raman effect using mercury green radiation of 546.1 nm, a stokes line of wavelength 554.6 nm was observed. Find Raman shift and wavelength corresponding to anti-stokes line. Given $c = 3 \times 10^8 \text{ ms}^{-1}$.
- 12. Calculate the distance of closet approach to a gold nucleus (Z = 79) of an α -particle of kinetic energy 7.8 meV and also find the impact parameter to produce scattering angles $\geq 90^{\circ}$. Given $\epsilon_0 = 8.85 \times 10^{-12} \, \text{Fm}^{-1}$ and $\epsilon = 1.6 \times 10^{-19} \, \text{C}$.
- 13. Calculate the α -particle potential barrier in MeV for $_{92}$ U²³⁸ nucleus. Given R₀ = 1.2 × 10⁻¹⁵ m \in $_0$ = 8.85 × 10⁻¹² Fm⁻¹ and e = 1.6 × 10⁻¹⁹ C.
- 14. Find the amount of energy in joules released during the process in which 0.001 kg of radium is converted into lead in the following reaction.

 $Ra^{226} \rightarrow Pb^{206} + 5 He^4$

Given masses Ra²²⁶ = 226.0955 amu

 $Pb^{206} = 206.0386$ amu

and α -particle = 4.003 amu.

