First Semester B.Sc. Degree Examination, November/December 2019

(CBCS Scheme - Freshers)

Physics

Paper 101 - MECHANICS - I, HEAT AND THERMODYNAMICS - I

Time: 3 Hours [Max. Marks: 70 Instructions to Candidates: Answer any **FIVE** questions from each Part. PART - A Answer any **FIVE** questions, each question carries 8 marks: 1. Derive the relation between coefficient of static friction and angle of repose. Obtain an expression for the velocity of the accelerating body moving along an inclined plane without friction. (4 + 4)2. Define orbital velocity. (a) Obtain an expression for the escape velocity of an object from the earth surface. 3. Explain conservative and non-conservative forces with examples. (a) Derive an expression for work done by a variable force. (b) 4. Derive Planck's law of radiation for a black body. (8)KGF - 563 122 Show that the pressure exerted by a gas, $pv = \frac{1}{3}mnc^2$. 5. (8)6. (a) Mention the assumptions of kinetic theory of gases. Deduce the relation for the coefficient of viscosity of a gas on the basis of kinetic theory of gases. (2 + 6)

- 7. (a) State the first law of thermodynamics and explain its significance.
 - (b) Obtain an expression for the amount of work done by an ideal gas during isothermal process. (3 + 5)
- 8. (a) State Carnot's theorem. Write the expression for the efficiency of Carnot's heat engine.
 - (b) Derive an expression for change in entropy for a cyclic process. (4 + 4)

PART - B

Answer any **FIVE** of the following problems. Each question carries 4 marks:

 $(5 \times 4 = 20)$

- 9. A 2 kg block is placed on a horizontal surface. The coefficient of static friction between the block and the surface is 0.15. If an external force of 5 N is applied on the block parallel to the surface, find the acceleration of the block. Given $g = 9.8 \, \text{m/sec}^2$.
- 10. Calculate the mass of the earth, given that the gravitational constant = 6.67×10^{-11} Nm² kg⁻², radius of the earth = 6.38×10^{6} m and acceleration due to gravity = 9.8 m/sec².
- 11. Calculate the work done in lifting a body of mass 28 kg to a height of 1.5 m.
- 12. Determine the temperature at which a black body loses thermal energy at the rate of 10^4 Wm⁻². Given, Stefan's constant = 5.7×10^{-8} Wm⁻²k⁻⁴.
- 13. The mean free path of nitrogen molecules of 0° C and one atmosphere is 0.8×10^{7} m and the number of nitrogen molecules is 2.7×10^{25} m⁻³. Calculate the molecular diameter of nitrogen molecules.
- 14. Calculate Vander Waal's constants a and b. Given that critical pressure of the gas is 2.1×10^6 Nm⁻² and critical volume for a mole is 45×10^{-6} Nm³.
- 15. One mole of an ideal gas at 273 K is subjected to a reversible adiabatic expansion to double its volume. Calculate the change in temperature of the gas. Given r = 1.4.
- 16. Calculate the change in entropy when 0.5 kg of ice at 273 K melts into water and the temperature of water is raised to 300 K. Given entropy change in melting ice at 273 K = 61.5 JK⁻¹ and specific heat of water = 4200 J kg⁻¹k⁻¹.

61121

PART - C

Answer any **FIVE** of the following. Each question carries 2 marks: $(5 \times 2 = 10)$

- 17. (a) Why it is difficult to run fast on sand?
 - (b) Is it possible to shield a body from gravitational effects? Explain.
 - (c) Does the momentum of a system of particles is always conserved? Justify.
 - (d) Why does a good absorber of radiant energy appears black?
 - (e) Does the temperature of the gas increase when it is compressed suddenly? Explain.
 - (f) What are the factors on which the Vander Waal's correction for the pressure depends?
 - (g) Does the internal energy of a substance is a state function? Justify.
 - (h) Can the efficiency of Carnot's engine 100%? Explain.

