61502

Fifth Semester B.Sc. Degree Examination, March/April 2021

(CBCS Scheme - Freshers)

Physics

Paper VI — ASTROPHYSICS, SOLID STATE PHYSICS AND SEMICONDUCTOR PHYSICS

Instructions to Candidates :

Time: 3 Hours

[Max. Marks: 70

- 1) Answer any five questions from each Part.
- 2) Non-programmable scientific calculators are allowed.

PART - A

Answer any FIVE of the following. Each question carries 8 marks:

 $(5 \times 8 = 40)$

- 1. (a) Define apparent magnitude and absolute magnitude of a star.
 - (b) Derive an expression for the distance of a star in terms of its apparent and absolute magnitudes. (2 + 6)
- 2. Obtain an expression for the gravitational potential energy of a star based on linear density model. (8)
- 3. What is Compton effect? Derive an expression for Compton shift. (8)
- 4. (a) Define Fermi level and Fermi energy.
 - (b) Obtain an expression for Fermi energy of an electron in metals at absolute zero based on free electron theory of metals. (2 + 6)
- 5. (a) Define:
 - (i) The phenomenon of superconductivity
 - (ii) Critical magnetic field
 - (iii) Critical temperature
 - (iv) Meissner's effect.
 - (b) Give any four differences between Type-I and Type-II superconductors. (4 + 4)
- 6. (a) What are intrinsic semiconductors?
 - (b) Derive an expression for the density of electrons in the conduction band of an intrinsic semiconductor. (1 + 7)

61502

- 7. (a) Give any two differences between zener diode and ordinary diode.
 - (b) With a neat circuit diagram explain the working of a zener diode as a voltage regulator and obtain an expression for the minimum value of series resistance. (2 + 6)
- 8. What is a transistor? With a neat circuit diagram explain the working of NPN transistor in CE mode as an amplifier. (8)

PART - B

Solve any **FIVE** of the following. Each problem carries **4** marks: $(5 \times 4 = 20)$

- 9. A star has luminosity 10^4 times that of the sun with a surface temperature 2000 K. Find the radius of the star. Given: $(T_{\odot} = 6000 \text{ K and } R_{\odot} = 7 \times 10^8 \text{ m})$.
- 10. Calculate the temperature and pressure of a star at a distance 4×10^8 m from its center. ($T_c = 20 \times 10^6$ K, $P_c = 1.08 \times 10^{15}$ Nm⁻² and $R = 8 \times 10^8$ m)
- 11. The absolute magnitude of a white dwarf is 10 and its surface temperature is 12000 K. Compare its radius with that of Sun. Given absolute magnitude of Sun = 4.7 and its surface temperature = 6000 K.
- 12. The voltage applied to an X-ray tube is 60 kV. What is the minimum wavelength emitted? If this radiation is incident on a crystal of interplanar spacing 1.6 Å, what is the smallest angle at which Bragg reflection may be observed?
- 13. A copper slab of 0.5 m thick and 0.02 m wide carrying a current of 50 A is placed in a transverse magnetic field of 1.8T. Calculate the magnitude of hall voltage. (Free electron concentration in copper is 8.48×10^{28} m⁻³)
- 14. Calculate the current produced in a small Ge plate of area 10^{-4} m² and of thickness 0.2×10^{-3} m when a p.d. of 4 V is applied across the faces. (Concentration of free electrons in Ge is 2×10^{19} m⁻³, mobilities of electrons and holes are 0.36 m²/V S and 0.17 m²/V S respectively)
- 15. For a transistor in CE mode V_{CC} = 12 V and R_c = 5 k Ω . Calculate the values of cutoff and saturation points to draw dc load line.
- 16. The h-parameters are $h_{ie}=2~{\rm k}\Omega$, $h_{re}=3\times10^{-4}$, $h_{fe}=60$ and $h_{oe}=30\times10^{-6}$ mho. Calculate the current gain and voltage gain. ($R_S=1~{\rm k}\Omega$ and $R_L=2~{\rm k}\Omega$)

61502

PART - C

Answer any **FIVE** of the following. Each question carries 2 marks : $(5 \times 2 = 10)$

- 17. (a) Does more massive star has shorter life time? Explain.
 - (b) Can all stars have equal masses? Explain.
 - (c) Is neutron star a black hole? Explain.
 - (d) Is penetrating power of X-rays is greater than that of visible light? Explain.
 - (e) Is electrical conductivity of metals depend on temperature? Explain.
 - (f) Good conductors like copper and silver do not show superconductivity. Justify.
 - (g) The depletion region of a p-n junction diode becomes wide when it is reverse biased. Justify.
 - (h) The base of a transistor is very thin and lightly doped. Justify.