First Semester B.C.A. Degree Examination, August/September 2021

(CBCS Scheme — Freshers and Repeaters)

Computer Science

Paper BCA105T — DISCRETE MATHEMATICS

Time : 3 Hours]

Instructions to Candidates : Answer all Sections.

[Max. Marks: 100

SECTION - A

- I. Answer any **TEN** of the following. Each question carries **2** marks : $(10 \times 2 = 20)$
- 1. Define Power Set. Illustrate with an example.
- 2. If $A = \{1, 2, 4, 8\}$, $B = \{1, 3, 4\}$ and $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ verify $A B = A \cap \overline{B}$.
- 3. Construct the truth table for $\sim p \wedge q$.
- 4. Define Scalar matrix with example.
- 5. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$ find AB.
- 6. Find the characteristic equation of the matrix $\begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}$.
- 7. Show that $\log_{10}^{200} + \log_{10}^{5} = 3$.
- 8. If ${}^{n}C_{7} = {}^{n}C_{5}$ find 'n'.
- 9. On the set of integers Z, the binary operation '*' is defined by $a*b = \frac{ab}{3}$, $\forall a,b \in Z$. Find Identity element.
- 10. If $\vec{a} = 3i 4j$, $\vec{b} = 2i + j$ find $|\vec{a} + \vec{b}|$.
- 11. Find the distance between the points (2, 3) and (1, 3).
- 12. Write the slope, x-intercept and y-intercept of the line $\sqrt{3}x + y + 2 = 0$.

65123

SECTION – B

- II. Answer any SIX of the following. Each question carries 5 marks: $(6 \times 5 = 30)$
- 13. In a college of 400 students, 180 students take Mathematics as major subject, 160 take Physics as major subject and 150 take neither. Find
 - (a) how many students take both Mathematics and Physics as major subjects?
 - (b) how many take Mathematics as major but not Physics?
- 14. If $f: R \to R$ is defined by f(x) = 5x 7, show that f is one-one and onto.
- 15. Show that the proposition $(p \rightarrow q) \leftrightarrow p \lor q$ is a tautology.
- 16. Write the converse, inverse and contra positive of the conditional "If two integers are equal then their squares are equal".
- 17. Show that $[p \lor (q \land r)] \equiv [(p \lor q) \land (p \lor r)]$.
- 18. Find the inverse of the matrix $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 3 \\ -3 & -2 & 4 \end{bmatrix}$.
- 19. Solve using Cramer's rule 2x + 5y + z = -1, x + 7y 6z = -18, 3y + 6z = 9.
- 20. Find the eigen values and the eigen vectors of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$.

SECTION - C

- III. Answer any SIX of the following. Each question carries 5 marks: $(6 \times 5 = 30)$
- 21. If $\log_8^x + \log_4^x + \log_2^x = 11$ find 'x'.
- 22. (a) Find 'n' if ${}^{n}P_{4} = 10 \cdot {}^{n}P_{3}$.
 - (b) Find 'n' if ${}^{n}C_{n-4} = 5$.
- 23. A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee of (a) exactly 3 girls (b) atleast 3 girls (c) atmost 3 girls?

65123

- 24. Show that $G = \{1, 2, 3, 4\}$ is an abelian group under multiplication modulo 5.
- 25. Find the number of 4 digit numbers can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated. How many of these will be even?
- 26. Show that the points whose position vectors are 2i-j+k, i-3j-5k and 3i-4j-4k form a right angled triangle. Also find the remaining angles of the triangle.
- 27. Show that the points A(1, 2, 3), B(2, 3, 1) and C(3, 1, 2) are vertices of an equilateral triangle.
- 28. Find the area of the parallelogram whose diagonals are $\vec{a} = 3i + 2j 2k$ and $\vec{b} = i 3j + 4k$.

SECTION - D

- IV. Answer any **FOUR** of the following. Each question carries **5** marks : $(4 \times 5 = 20)$
- 29. Show that the points (2, -2), (8, 4), (5, 7) and (-1, 1) are the vertices of a triangle.
- 30. Find the area of the quadrilateral whose vertices are A(1, 1), B(3, 4), C(5, -2) and D(4, -7).
- 31. Find the equation of the locus of the point which moves such that its distance from the point (2, 3) is twice its distance from (-2, 2).
- 32. Show that the line joining the points (2, -3) and (-5, 1) is parallel to the line joining the points (7, -1) and (0, 3).
- 33. Find the equation of the line passing through (-2, 1) and making an angle of 135° with the positive direction of X axis.
- 34. Find the equation of the line passing through (-2, 2) and the sum of the intercepts on the co-ordinate axes is 3.