Fifth Semester B.A./B.Sc. Degree Examinations, March/April 2021

(CBCS Scheme)

Paper VI - MATHEMATICS

Time : 3 Hours

[Max. Marks: 70

Instructions to Candidates : Answer all Parts.

PART – A

Answer any **FIVE** questions:

 $(5 \times 2 = 10)$

- 1. (a) Write the Euler's equation when f is independent of x.
 - (b) Find the differential equation of the functional $I = \int_{x_1}^{x_2} [y^2 + 4(y^1)^2] dx$.
 - (c) Define geodesic on a surface.
 - (d) Evaluate $\int_C 5x dx + y dy$ where C is the curve $y = 2x^2$ from (0, 0) to (1, 2).
 - (e) Evaluate $\int_{1}^{2} \int_{0}^{x^2} x(x^2 + y^2) dy dx$.
 - (f) Evaluate $\iint_{0}^{1} \int_{0}^{1} dx dy dz$.
 - (g) State Stoke's theorem.
 - (h) Show that the area of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab using Green's theorem.

PART – B

Answer **TWO** full questions:

(2 × 10 = 20)

- 2. (a) Find the extremal of the functional $I = \int_{x_1}^{x_2} [y^2 + (y^1)^2 + 2ye^x] dx$.
 - (b) Prove that the necessary condition for the integral $I = \int_{x_1}^{x_2} f(x, y, y^1) dx$ with $y(x_1) = y_1$ and $y(x_2) = y_2$ to be an extremum is $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y^1} \right) = 0$.

The Find the surface area of the portion of the cylinder $x^2 + x^2 = a^2$, which lies

- 3. (a) Show that the extremal of $I = \int_{x_1}^{x_2} \sqrt{y[1+(y^1)^2]} dx$ is a parabola.
 - (b) Find the curve on which the functional $I = \int_0^1 [(y^1)^2 + 12xy] dx$ with y(0) = 0 and y(1) = 1 can be extremed.
- 4. (a) Show that a heavy cable hangs freely under gravity between two fixed points is a Catenary.
 - (b) Find the extremal of the functional $\int_{0}^{1} [x+y+(y^{1})^{2}]dx = 0$ under the conditions y(0) = 1 and y(1) = 2.

Or

- 5. (a) Find the extremal of the functional $\int_0^1 (y^1)^2 dx$ subject to the constraint $\int_0^1 y dx = 1$ and having y(0) = 0 and y(1) = 1.
 - (b) Find the geodesic on a surface of right circular cylinder.

PART - C

Answer TWO full questions:

 $(2 \times 10 = 20)$

- 6. (a) Evaluate $\int_C (x^2 + 2y^2x) dx + (x^2y^2 1) dy$ around the boundary of the region defined by $y^2 = 4x$ and x = 1.
 - (b) Evaluate $\int_C (xy + z^2) dS$ where C is the arc of the helix $x = \cos t$, $y = \sin t$, z = t joining the points (1, 0, 0) and $(-1, 0, \pi)$.

this wast the recessor cond of nor the integral I = 1 leaves of the integral I = 1 leaves with

- 7. (a) Change the order of integration and hence evaluate $\int_{0}^{a^{2}\sqrt{ax}} \int_{0}^{x^{2}} dy dx$.
 - (b) Find the surface area of the portion of the cylinder $x^2 + z^2 = a^2$ which lies inside the cylinder $x^2 + y^2 = a^2$.

- 8. (a) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by changing into polar co-ordinates.
 - (b) Find the volume of tetrahedron formed by the planes x=0, y=0, z=0 and 6x + 4y + 3z = 12.

Or

- 9. (a) Evaluate $\iint_R xyz \, dx \, dy \, dz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$ by changing it to spherical polar co-ordinates.
 - (b) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{dx \, dy \, dz}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}}$.

PART - D

Answer TWO full questions:

 $(2 \times 10 = 20)$

- 10. (a) Verify Green's theorem in the plane for $\oint_C xy \, dx + yx^2 \, dy$ where, C is the curve enclosing the region bounded by the curve $y = x^2$ and the line y = x.
 - (b) State and prove Gauss' Divergence theorem.

01

- 11. (a) Using Green's theorem evaluate $\int_C e^{-x} \sin y \, dx + e^{-x} \cos y \, dy$ where, C is the rectangle with vertices $(0,0), (\pi,0), \left(\pi,\frac{\pi}{2}\right)$ and $\left(0,\frac{\pi}{2}\right)$.
 - (b) Using divergence theorem, show that

(i)
$$\iint_{S} \vec{r} \cdot \hat{n} \, dS = 3V \text{ and } (ii) \qquad \iint_{S} (\nabla r^{2}) \cdot \hat{n} \, dS = 6V.$$

- 12. (a) Using the divergence theorem evaluate $\iint_S \vec{F} \cdot \hat{n} \, dS$ where, $\vec{F} = x^3 \hat{i} + y^3 \hat{j} + z^3 \hat{k}$ and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$.
 - (b) Evaluate by Stoke's theorem $\oint_C yz dx + zx dy + xy dz$ where, C is the curve $x^2 + y^2 = 1$, $z = y^2$.

Or

- 13. (a) Evaluate $\iint_S \vec{F} \cdot \hat{n} \, dS$ using divergence theorem where, $\vec{F} = (x^2 yz)\hat{i} + (y^2 xz)\hat{j} + (z^2 xy)\hat{k}$ taken over rectangular box $0 \le x \le a$, $0 \le y \le b$ and $0 \le z \le c$.
 - (b) Evaluate by Stoke's theorem $\oint_C (\sin z \, dx \cos x \, dy + \sin y \, dz)$ where, *C* is the boundary of rectangle $0 \le x \le \pi$, $0 \le y \le 1$ and z = 3.