First Semester B.A./B.Sc. Degree Examination, August/September 2021

(CBCS Scheme)

Paper I - MATHEMATICS

Time: 3 Hours]

[Max. Marks: 70

Instructions to Candidates: Answer ALL Parts.

PART - A

Answer any **FIVE** questions:

 $(5 \times 2 = 10)$

- 1. (a) Find the value of λ in order that the matrix $A = \begin{bmatrix} 6 & \lambda & -1 \\ 2 & 3 & 1 \\ 3 & 4 & 2 \end{bmatrix}$ has rank 2.
 - (b) Find the Eigen values of the matrix $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.
 - (c) Find the nth derivative of $\frac{1}{(5x-2)^3}$.
 - (d) If $z = x^2 + y^2 3xy$ then find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$
 - (e) Evaluate $\int_{0}^{\frac{\pi}{2}} \cos^8 x \ dx.$
 - (f) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^6 x \cos^4 x \, dx.$
 - (g) Find the angle between the line $\frac{x-3}{2} = \frac{y+1}{-1} = \frac{z+4}{3}$ and the plane 2x+3y-z=4.
 - (h) If the two spheres $x^2 + y^2 + z^2 + 6z k = 0$ and $x^2 + y^2 + z^2 + 10y 4z 8 = 0$ cut orthogonally find k.

PART – B

Answer **ONE** full question :

 $(1 \times 15 = 15)$

- 2. (a) Find rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & -2 \\ -2 & -5 & 1 & 2 \\ -3 & -8 & 5 & 2 \\ -5 & -12 & -1 & 6 \end{bmatrix}$.
 - (b) For what values of λ and μ the equations x + 2y + 3z = 5, x + 3y z = 4, $x + 4y + \lambda z = \mu$ have
 - (i) no solution,
 - (ii) a unique solution
 - (iii) an infinite number of solution.
 - (c) Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$.

01

- 3. (a) Reduce the matrix $\begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$ to the normal form and hence find the
 - (b) Show that the equations 4x 5y + z = 2, 3x + y 2z = 9, x + 4y + z = 5 are consistent and solve them.
 - (c) If $A = \begin{bmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{bmatrix}$ find A^3 by using Cayley-Hamilton theorem.

Answer **TWO** full questions:

 $(2 \times 15 = 30)$

- 4 (a) Find the *n*th derivative of $\frac{x}{1+3x+2x^2}$.
 - (b) Find the *n*th derivative of $e^x \sin x \cos 2x$.
 - (c) If $y = \tan^{-1} x$ prove that $(1+x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$.
- 5. (a) If u = f(y + ax) + g(y ax), show that $\frac{\partial^2 u}{\partial x^2} = a^2 \frac{\partial^2 u}{\partial u^2}$.
 - (b) State and prove Euler's theorem for homogeneous function of x and y.
 - (c) If f = f(u, v, w) and $u = \frac{x}{y}$, $v = \frac{y}{z}$, $w = \frac{z}{x}$, show that $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + z \frac{\partial f}{\partial z} = 0$.

- 6. (a) Find $\frac{dz}{dt}$ if $z = x^2 + y^2$ where $x = e^t \cos t$, $y = e^t \sin t$.
 - (b) If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$, show that $\frac{\partial (x, y, z)}{\partial (r, \theta, \phi)} = r^2 \sin^2 \theta$.
 - (c) Obtain the reduction formula for $\int \sin^n x \, dx$ where n is a positive integer.

Or

- 7. (a) Evaluate $\int_{0}^{4} x^{3} \sqrt{4x x^{2}} dx$.
 - (b) Evaluate $\int_{0}^{\pi} x \cos^{4} x \, dx$.
 - (c) Using Leibnitz's rule of differentiation under integral sign evaluate $\int_{0}^{1} \frac{x^{\alpha} 1}{\log x} dx$ where $\alpha > 0$ is a parameter.

PART - D

Answer ONE full question :

 $(1 \times 15 = 15)$

- 8. (a) Find the equation of the plane coaxial with the planes x-2y+Z-7=0 and 2x+3y-4z=0 and cutting intercept 4 units on the x- axis.
 - (b) Show that the lines $\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{1}$ and $\frac{x-2}{3} = \frac{y-2}{2} = \frac{z-6}{4}$ are coplanar and find the equation of the plane containing them.
 - (c) Find the equation of the sphere which passing through the origin and the points (1,0,0), (0,1,0) and (0,0,1).

Or

- 9. (a) Find the shortest distance between the lines $\frac{x-2}{3} = \frac{y-6}{-2} = \frac{z-5}{-2}$ and $\frac{x-5}{2} = \frac{y-3}{1} = \frac{z+4}{-6}$.
 - (b) Find the equation of the right circular cone whose axis is $\frac{x-1}{-1} = \frac{y-2}{3} = \frac{z-3}{3}$ and a generator is $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$.
 - (c) Find the equation of the right circular cylinder of radius 3 and the axis $\frac{x-1}{2} = \frac{y-3}{2} = \frac{z-5}{-1}.$