61501

Fifth Semester B.Sc. Degree Examination, March/April 2021

(CBCS Scheme - Freshers - 2020-21 and onwards)

Physics

Paper V — STATISTICAL PHYSICS, QUANTUM MECHANICS – I, ATMOSPHERIC PHYSICS AND NANO-MATERIALS

Time: 3 Hours]

[Max. Marks: 70

Instructions to Candidates: Answer any five questions from each Part.

PART - A

Answer any ${f FIVE}$ of the following. Each question carries ${f 8}$ marks :

 $(5 \times 8 = 40)$

- 1. (a) Write any four basic postulates of statistical physics.
 - (b) What is thermodynamic probability? Obtain the relation $S = K \ln \Omega$. (4 + 4)
- 2. What is meant by Fermi gas? Derive an expression for Fermi-Dirac distribution function. (1 + 7)
- 3. (a) What are bosons? Give an example.
 - (b) Compare the Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac distribution functions. (2 + 6)
- 4. Describe briefly the failure of classical mechanics to explain (a) stability of atom (b) photoelectric effect. (4 + 4)
- 5. Explain with relevant theory Davisson-Germer experiment to demonstrate de-Broglie hypothesis.
- 6. Define the terms: (a) Phase velocity (b) Group velocity. Derive the relation between them.
- 7. What is meant by hydrostatic balance? Obtain the condition for hydrostatic balance and hence derive the expression for variation of pressure with altitude in the atmosphere.

 (2 + 6)
- 8. (a) Write a note on Carbon nano tube.
 - (b) Mention any four properties of nano materials.

(4 + 4)

61501

PART - B

Answer any **FIVE** of the following. Each question carries 4 marks: $(5 \times 4 = 20)$

Common data:

 $h = 6.625 \times 10^{-34} \text{ Js}; \quad k = 1.38 \times 10^{-23} \text{ JK}^{-1}; \quad c = 3 \times 10^8 \text{ ms}^{-1}; \quad m_e = 9.1 \times 10^{-31} \text{ kg};$ $m_n = 1.67 \times 10^{-27} \text{ kg}.$

- 9. At what temperature rms velocity of hydrogen will be double the rms velocity of oxygen at 300 K. Given molecular weight of hydrogen and oxygen are 2 and 32 respectively.
- 10. A system has only two particles. Show with a diagram how these particles can be arranged in three quantum states 1, 2, 3 using Bose-Einstein statistics.
- 11. Estimate the fraction of electrons excited above the Fermi level at room temperature for copper. Given Fermi energy of copper is 7 eV.
- 12. Calculate the de-Broglie wavelength of neutron of energy 28.8 eV.
- 13. Calculate the frequency and energy (in eV) of a photon of wavelength 4000 Å.
- 14. An electron has a speed of 200 ms⁻¹ accurate to 0.01%. With what accuracy can we locate the position of the electron?
- 15. Calculate the pressure gradient force per unit mass at a hill station if the pressure gradient is 3 Pa/Km. Given air density is 1.2 Kgm⁻³.
- 16. Calculate the Coriolis force at a hill station at 30°N having a zonal wind speed of 20 ms⁻¹.

PART - C

Answer any **FIVE** of the following. Each question carries 2 marks: $(5 \times 2 = 10)$

- 17. (a) Can we use Maxwell-Boltzmann statistics to explain the properties of photon gas? Explain.
 - (b) Does ₂He³ obey Bose-Einstein statistics? Explain.
 - (c) An electron and a proton have same velocity, which one will have greater de-Broglie wavelength? Explain.

61501

- (d) The concept of trajectory is meaningless in quantum mechanics. Explain.
- (e) Is Coriolis force maximum at the poles? Explain.
- (f) In which layer of the atmosphere are the satellites placed? Explain.
- (g) Can nano objects be seen by optical microscope? Explain.
- (h) Fullerenes are stable physically. Why?