Second Semester B.C.A. Degree Examination, September/October 2021

(CBCS Scheme)

Computer Science

NUMERICAL AND STATISTICAL METHODS

Time: 3 Hours] [Max. Marks: 100

Instructions to Candidates: Answer All Sections.

SECTION - A

I. Answer any **TEN** questions of the following:

 $(10 \times 2 = 20)$

- 1. Multiply $0.5543E\ 12 \times 0.4111E 15$.
- 2. Define Relative and Absolute Error.
- 3. Write the formula for Newton's Raphson Method.
- 4. Construct the forward difference table for the following:

X: 1 2 3 4 5 f(X): 10 26 58 112 194

5. Write the Newton's forward interpolation formula.

- 6. Write the Simpson's $\frac{3}{8}^{th}$ Rule formula.
- 7. Explain Gauss Elimination Method for solving system of linear equations.
- 8. Calculate the Arithmetic Mean from the following data: 40, 50, 55, 78, 58, 60, 73, 35, 43, 48.
- 9. Find the coefficient of variation given that mean is 39.5 and standard deviation is 9.58.
- 10. Define Conditional Probability.
- 11. Write the Alternative formula to calculate Karl Pearson's coefficient of correlation.
- 12. From a pack of 52 cards, what is the probability of drawing one card that it is either king or queen?

SECTION - B

II. Answer any **SIX** questions of the following:

 $(6\times 5=30)$

- 13. Find a real root of the equation $X^3 2X 5 = 0$ using Bisection method in five iterations. (5)
- 14. Find a polynomial of degree two which taken the values.

(5)

X: 01234567

f(X): 1 2 4 7 11 16 22 29

15. Using Lagrange's interpolation formula find f(10) from the following data: (5)

X: 5 6 9 11

f(X): 12 13 14 16

- 16. Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\cos \theta} \, d\theta$ by Simpson's $\frac{1^{rd}}{3}$ rule by dividing $\left[0, \frac{\pi}{2}\right]$ into six equal parts.
- 17. Evaluate $\int_{0}^{6} \frac{dx}{1+X^2}$ by using Trapezoidal Rule by taking h=1. (5)
- 18. Solve the system of Linear Equations by Crout's LU decomposition method: (5)

 $2X_1 + 3X_2 + X_3 = -1$

 $5X_1 + X_2 + X_3 = 9$

 $3X_1 + 2X_2 + 4X_3 = 11.$

19. Solve the system of equations by Gauss Seidal method: (5)

10X + Y + Z = 12

2X + 10Y + Z = 13

2X + 2Y + 10Z = 14.

20. Determine the machine representation of the decimal number 52.234375. (5)

SECTION - C

III. Answer any **SIX** questions of the following:

21. Solve the system of equations by Gauss Elimination Method: (5)

X + Y + Z = 9

X - 2Y + 3Z = 8

2X + Y - Z = 3.

Solve the system of equations by Gauss Jacobi's Method:

(5)

10X + 2Y + Z = 9

X + 10Y - Z = -22

-2X + 3Y + 10Z = 22.

- Find largest Eigen value and corresponding Eigen vector of $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$ by power method. Do only five iterations. (5)
- 24. Use Taylor's Series Method to find Y at X = 1.1 and 1.2 considering terms upto third degree given $\frac{dy}{dx} = x + y$ and y(1) = 0. (5)
- Solve $\frac{dy}{dx} = Y X^2$, Y(0) = 1 by Picard's Method upto third approximation. Hence find Y(0.2). (5)
- By using Runge-Kutta Method of fourth order, solve $\frac{dy}{dx} = 3X + \frac{Y}{2}$ with Y(0) = 126. by taking h = 0.2. (5)
- Find the Geometric Mean from the following data:

(5)

 $C.I.: 20 - 30 \ 30 - 40 \ 40 - 50 \ 50 - 60 \ 60 - 70$

f: 5 13 7 11 4

State and prove Bayes Theorem.

(5)

SECTION - D

Answer any FOUR questions of the following: IV.

 $(4 \times 5 = 20)$

29. Find the co-efficient of correlation for the following data: (5)

X: 92 89 87 86 83 77 71 63 53 50

Y: 86 83 91 77 68 85 52 82 37 57

30. Find the Karl Pearson's coefficient of Skewness from the following data: (5)

 $X: 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10$

f: 7 10 14 35 102 136 43 8

31. Find the Median for the following data:

(5)

 $C.I.: 5-10\ 10-15\ 15-20\ 20-25\ 25-30\ 30-35\ 35-40\ 40-45\ 45-50$

f: 7 15 24 31 42 30 26 15 10

Find the Probability that a family of 4 children there will be

(a) atleast one boy

32.

(b) atleast one boy and one girl.

Assume that probability of male birth is $\frac{1}{2}$. (5)

33. Show that the following distribution represents a discrete probability distribution. Find its mean and variance: (5)

 X_i : 10 20 30 40

 $P(X_i)$: $\frac{1}{8}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$

34. Obtain the function of the normal probability curve to the following data: (5)

 X_i : 5 6 7 8 9 10 11

fi: 2 5 8 12 7 4 3