

- 3. a) Prove that a ring R is without zero divisors if and only if cancellation laws hold in R.
 - b) Find all the principal ideals of the ring $R = \{0, 1, 2, 3, 4, 5\}$ w.r.t. $+_6$ and x_6 .
- 4. a) If $f: R \to R'$ be a homomorphism of R into R' then show that Ker f is an ideal of R.
 - b) State and prove fundamental theorem of homomorphism of rings.

OR

- 5. a) Show that $f: R_1 \to R$ defined by $f \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = a$, $\forall \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in R$ is an isomorphism where $R_1 = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \middle/ a \in R \right\}$.
 - b) Prove that an ideal S of the ring of integers (z, +, .) is maximal if and only if S is generated by some prime integer.

elswetni Isupenii not PART - Cilstometni e'epnsibe I ethW (b

Answer two full questions:

(2×10=20)

- 6. a) Prove that the surfaces $4x^2y + z^3 = 4$ and $5x^2 2yz 9x = 0$ intersect orthogonally at the point (1, -1, 2).
 - b) If $\vec{F} = \text{grad} (2x^3y^2z^4)$ find $\text{div}(\vec{F})$ and $\text{curl}(\vec{F})$.

OR

- 7. a) Prove that $\nabla^2(r^n) = n (n + 1)r^{n-2}$ where n is a non-zero constant. Also show that r^n is harmonic if n = -1.
 - b) If the vector $\vec{F}=(3x+3y+4z)\ \hat{i}+(x-ay+3z)\ \hat{j}+(3x+2y-z)\ \hat{k}$ is Solenoidal find 'a'.