**DCPH 201** 



## II Semester B.Sc. Degree Examination, Oct./Nov. 2022 (NEP Scheme) PHYSICS Electricity and Magnetism

Time: 2½ Hours Max. Marks: 60

Instruction: Use of non-programmable calculators is permitted.

## PART - A

Answer any six questions. Each question carries one mark:

 $(1 \times 6 = 6)$ 

- 1. What is a gaussian surface?
- 2. Give the relation between electric field and electric potential at a point.
- 3. Why is an HTG preferable to a tangent galvanometer to measure currents?
- 4. What is meant by critical damping?
- 5. What is the internal resistance of an ideal current source ?
- 6. What is meant by wattless current?
- 7. What are persistent currents in relation to a super conductor?
- 8. Define the term "retentivity".

PART - B

Answer any six questions. Each question carries two marks:

 $(2 \times 6 = 12)$ 

- 9. What is an electric dipole? What will be the dipole moment of a dipole whose arm is zero?
- 10. What is the physical significance of the gradient of a scalar function?
- 11. How do you determine the Thevenin resistance of a circuit ?



- 12. The distance between the plates of a parallel plate capacitor is d. If a metal plate of thickness  $\frac{d}{2}$  is introduced between the plates, how does the capacitance change ?
- 13. Define mutual inductance between a pair of coils.
  - 14. What are true power and virtual power as applied to ac circuits. What is the significance of the ratio of true power to apparent power?
  - 15. How does an accelerated charge produce electromagnetic waves ?
  - 16. Classify hard and soft magnetic materials.

## PART - C

Answer any three questions. Each question carries four marks:

 $(3\times 4=12)$ 

- 17. In a certain region the electrostatic potential is given by the expression  $V=4x^2+3y^2-12z^2$ . What is the electric intensity at a point (1, 2, 4) in this region?
- 18. An ebonite plate (K = 3) 6 mm thick is introduced between the parallel plates of a capacitor of plate area  $2 \times 10^{-2}$  m² and plate separation 0.01 m. Find the capacitance.
- 19. The ac voltage and current in a circuit are given by  $e = 110 \sin(\omega t + \pi/6)$  and  $i = 5 \sin(\omega t \pi/4)$  respectively. Find the impedance and the average power dissipated in the circuit.
- 20. Approximately how large must be the magnetic induction, for the orientational energy to be comparable to the thermal energy at room temperature. Assume  $\mu_{\text{m}} = 5\mu_{\text{B}}$ .

## PART - D

Answer any five questions. Each question carries six marks :

 $(5 \times 6 = 30)$ 

- 21. Obtain an expression for the electric field due to an infinite sheet of charge.
- 22. State and prove the Norton's theorem.

6

- 23. What are polar dielectrics? Obtain an expression for the Gauss law in the presence of a dielectric. (1+5=6)
- 24. Obtain the relation  $\sigma = \frac{ne^2\tau}{m}$  where the symbols have their usual significance.

  Mention one limitation of ohm's law. (5+1=6)
- 25. Obtain an expression for the magnetic field due to an infinitely long straight current carrying conductor at a point near one end.6
- 26. Obtain an expression for impedance of an L-R circuit supplied with an ac voltage  $e = e_0 \sin \omega t$  using the j operator method. What are half power frequencies ? (5+1=6)
- 27. Derive the Maxwell's electromagnetic equations :  $\nabla .B = 0$  and  $\nabla \times E = -\frac{\partial B}{\partial t}$ . (3+3=6)
- 28. a) Compare and contrast the different types of magnetic materials. (2+4=6)
  - Mention any two properties and two applications of hard and soft magnetic materials.