Time: 3 Hours

IV Semester B.C.A. Examination, September/October 2022 (CBCS) (F + R) MATHEMATICS

Paper - IV: Operation Research

Instruction: Answer all the Sections.

SECTION - A

I. Answer any ten of the following.

(10×2=20)

Max. Marks: 100

- 1) Define Operation Research.
- 2) Define slack and surplus variable.
- 3) Define artificial variables with examples.
- 4) Define basic feasible solution and optimum solution in transportation problem.
- 5) What are the different methods in solving assignment problems?
- 6) How to calculate critical path?
- 7) Define expected time in PERT. Write its mathematical formula.
- 8) Explain Fulkerson's rule of numbering events.
 - 9) Write the steps for backward pass computation. I pm
 - 10) Define independent float and free float of an activity.
 - 11) Define:
 - i) Total elapsed time
 - ii) Idle time.
 - 12) What is pay-off matrix? Give an example.

SECTION - B

II. Answer any four of the following.

 $(4 \times 10 = 40)$

13) a) Explain the phases of operation research.

b) A production manager wants to determine the quantity to be produced per month of Products A and B manufactured by his firm. The data on resources required and availability of resources are given below:

Resources	Require	Available per month	
	Product A	Product B	5
Raw material (kg)	60	120	12000
Machine hours (pieces)	8	5	600
Assembly man (Hour)	3	4	500
Scale price/piece	Rs. 30	Rs. 40	nelt feet?

Formulate the above problem as a standard linear programming problem.

14) a) Explain the general LPP in standard form.

3/2

b) Solve the following LPP by graphical method:

Maximize z = 2x + 3ySubjected to the constraints

$$x + 2y \le 10$$

$$x + y \le 6$$

$$x \le 4$$

$$x, y \ge 0$$

6

15) a) Use Vogel's approximation method to obtain an initial basic feasible solution of the given transportation problem:

6

	D	E	Feld	G	Available
A	11	13	17	14	250
В	16	18	14	10	300
C	21	24	13	10	400
-l	200	OOF	075	OFO	BUILD STRING

Demand

200 225 275 250

b) Determine an initial basic feasible solution to the following transportation problem using North-West corner rule:

			Des	stinat	ion		
		1	2	3	4	5	Supply
Source	A	2	11	10	3	7	4
	В	gry B	4	7	2	1	8
	C	3	9	4	8	12	9
ema	and	3	3	4	5	6	

16) a) Explain Hungarian method for solving assignment problem.

Formulate the above problem as a standard linear programming problem.

5

5

b) The assignment cost of assigning any one operator to any one machine is given in the following table :

	Operator							
e		I	11	III	IV			
Machine	A	10	5	13	15			
lac	В	3	9	18	3			
5	C	10	7	3	2			
50	D	5	11	9	7			

Find the optimal assignment schedule.

5

17) A small project consists of seven activities for which the relevant data are given below:

ctivity	Preceding Activities	Activity Duration
al Ang no	union for til- transpariati	A
В	viggu2 - g	7
C	4 A- 30	6
D	A, B	6
E	A, B	5
F	C, D, E	6
G	C, D, E	6

	Donin Com of	C, D, E	5	
	i) Draw the ne	twork and find the proje	ect completion time	_
	ii) Calculate th	e total float for each of	the activity	5
18)	vvrite short note	s on:	the activities.	5
	a) Strategies ub) Maximin-Mir	sed in game theory.		5
		p.moipio.		E

SECTION - C

III. Answer any four of the following.

(4×10=40)
a) Compare between assignment problem and transportation problem.
b) Solve the following linear programming problem by simplex method:
Maximize z = 5x + 3y
Subject to the constraints
x + y ≤ 2

 $x + y \le 2$ $5x + 2y \le 10$ $3x + 8y \le 12$ $x, y \ge 0$

20) a)	Solve the following transportation problem by MODI Method:	
	The state of the s	

esal hatate	1	2	3	4	Supply
1	21	16	25	13	11
8 8 8	17	18	14	23	13
e III	32	27	18	41	19
Demand	6	10	12	15	Yab (M) n

 b) Write the steps to find initial basic feasible solution by matrix minima method.

14) a) Explain the general LPP in standard form.

4

b) Solve the following LPP by graphical method :

Maximize z = 2x + 3ySubjected to the constraints

 $x + 2y \le 10$

 $x + y \le 6$

 $x \le 4$

 $x, y \ge 0$

6

15) a) Use Vogel's approximation method to obtain an initial basic feasible solution of the given transportation problem:

6

	D	E	Feld	G	Available
A	11	13	17	14	250
В	16	18	14	10	300
C	21	24	13	10	400
-l	000	005	075	050	somo ensido

Demand 200 225 275 250

b) Determine an initial basic feasible solution to the following transportation problem using North-West corner rule:

			Des	stinat	ion		
		1	2	3	4	5	Supply
ce	A	2	11	10	3	7	4
Source	В	1	4	7	2	1	8
S	C	3	9	4	8	12	9
Dema	and	3	3	4	5	6	

16) a) Explain Hungarian method for solving assignment problem.

5

5

b) The assignment cost of assigning any one operator to any one machine is given in the following table :

slia	Operator Operator								
e	- AIR LUIK	Par	11	III	IV				
hi	A	10	5	13	15				
Machine	В	3	9	18	3				
6	C	10	7	3	2				
50	D	5	11	9	7				

Find the optimal assignment schedule.