

VI Semester B.A./B.Sc. Examination, September/October 2022 (CBCS) (F+R) (2016-17 and Onwards) MATHEMATICS Mathematics – VIII

Time: 3 Hours Max. Marks: 70

Instruction: Answer all Parts.

PART - A MI OMISMS HIS HER WORLD IS (2)

I. Answer any five questions.

 $(5\times2=10)$

- 1) a) Evaluate $\lim_{z \to -i} \frac{z^2 + 1}{z^6 + 1}$.
 - b) Show that $\left| \frac{z-2}{z+2} \right| = 3$ represents a circle.
 - c) Show that $u = e^x \cos y + xy$ is harmonic.
 - d) Define Bilinear transformation.
 - e) Show that $f(z) = \sin z$ is analytic.
 - f) State Liouville's theorem.
 - g) Find the real root of the equation $x^3 x 2 = 0$ over the interval (1.5, 2) upto two approximation by Bisection method.
 - h) Write iteration formula for Runge-Kutta method of fourth order.

PART - B

II. Answer four full questions.

 $(4 \times 10 = 40)$

- 2) a) Find the locus of the point z satisfying the relation |z + 1| + |z 1| = 4.
- b) Prove that the necessary condition for a function f(z) = u+iv to be analytic is $u_x = v_y$ and $u_y = -v_x$.

OR

- 3) a) Prove that $\lim_{z \to 0} \left(\frac{\overline{z}}{z}\right)$ does not exists.
 - b) Show that $f(z) = \log z$ is analytic and hence prove that $f'(z) = \frac{1}{Z}$.
- 4) a) Find the analytic function whose real part is $x^2 y^2 + \frac{x}{x^2 + y^2}$.
 - b) Find the orthogonal trajectory of the family of curves $x^2 y^2 + x = c$.

 OR
- 5) a) Show that an analytic function with constant modulus is a constant.
 - b) Show that $u = e^x \sin y + x^2 y^2$ is harmonic and find its harmonic conjugate.
- 6) a) Evaluate $\int_0^{2+i} (\bar{z})^2 dz$ along the line $y = \frac{x}{2}$
 - b) State and prove Cauchy's Integral Formula.

OR

- 7) a) Evaluate $\oint_C \frac{1}{z(z-1)} dz$ where 'C' is the circle |z| = 3.
 - b) State and prove fundamental theorem of algebra.
- 8) a) Prove that the Bilinear transformation preserves the cross ratio of four points.
 - b) Discuss the transformation $W = Z^2$.

OR

- 9) a) Show that the transformation $W = \frac{1}{Z}$ transforms circle into circle or to a straight line.
- b) Find the Bilinear transformation which maps Z=1, i, -1 onto $W=0, 1, \infty$.

2) a) Find the locus of the poin $2 - TRAP_{10}$ the relation |z + 1| + |z - 1| = 4.

III. Answer two full questions.

(2×10=20)

- 10) a) Find the root of the equation $x^3 4x + 1 = 0$ by Regula Falsi method upto three decimal places.
 - Find the cube root of 24, correct to three decimal places by Newton-Raphson method.

11) a) Solve by Gauss - Jacobi method:

$$x + y + 54 z = 110$$

$$27x + 6y - z = 85$$

$$6x + 15y + 2z = 72$$
.

- b) Find the largest eigenvalue of the matrix $A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$ by power method.
- 12) a) Use Taylor's series method to find y(0.1) considering terms upto the third degree given $\frac{dy}{dx} = 1 + xy$ and y(0) = 1.
 - b) Using Euler's method solve $\frac{dy}{dx} = x y$ for x = 0 (0.1) 0.5 given y = 1 when x = 0.

OR

b) Using Runge-Kutta method, find y(0. 2) for $\frac{dy}{dx} = x + y$; y (0) = 1 taking h = 0.2.

