

IV Semester B.C.A. Examination, September/October 2022 (CBCS) (F + R) polycollol and evice (d MATHEMATICS

Paper - IV: Operation Research

Time: 3 Hours

Max. Marks: 100

Instruction : Answer all the Sections.

SECTION - A

I. Answer any ten of the following.

1) Define Operation Research.

2) Define slack and surplus variable.

3) Define artificial variables with examples.

- 4) Define basic feasible solution and optimum solution in transportation problem.
- 5) What are the different methods in solving assignment problems?

6) How to calculate critical path?

- 7) Define expected time in PERT. Write its mathematical formula.
- 8) Explain Fulkerson's rule of numbering events.
- 9) Write the steps for backward pass computation.
- 10) Define independent float and free float of an activity.

11) Define:

i) Total elapsed time

ii) Idle time.

12) What is pay-off matrix? Give an example

SECTION - B

II. Answer any four of the following.

 $(4 \times 10 = 40)$

13) a) Explain the phases of operation research.

b) A production manager wants to determine the quantity to be produced per month of Products A and B manufactured by his firm. The data on resources required and availability of resources are given below:

Resources	Requir	Available per month	
1/1/217/11	Product A	Product B	
Raw material (kg)	60	120	12000
Machine hours (pieces)	8	5	600
Assembly man (Hour)	3	4	500
Scale price/piece	Rs. 30	Rs. 40	300

Formulate the above problem as a standard linear programming problem.

14) a) Explain the general LPP in standard form.

4

b) Solve the following LPP by graphical method:

Maximize z = 2x + 3y
Subjected to the constraints

$$x + 2y \le 10$$

$$x + y \le 6$$

$$x \le 4$$

$$x, y \ge 0$$

6

15) a) Use Vogel's approximation method to obtain an initial basic feasible solution of the given transportation problem :

6

	D	E	Fald	G	Available
A	11	13	17	14	250
В	16	18	14	10	300
C	21	24	13	10	400
-1	000	225	275	250	South a parional as work to

Demand 200 225 275 250

b) Determine an initial basic feasible solution to the following transportation problem using North-West corner rule :

• •	
4	-
	1000
1	1
13	HG!
1	W8 188
	The Park of the Pa

Destination

		1	2	3	4	5	Supply
e	A	2	11	10	3	7	emit 4 o
Sourc	В	1	4	7	2	1	8
Sc	C	3	9	4	8	12	9
Dema	and	3	3	4	5	6	

16) a) Explain Hungarian method for solving assignment problem.

5

b) The assignment cost of assigning any one operator to any one machine is given in the following table:

			perat	or	and the last
9		-	11	III	IV
Machine	A	10	5	13	15
lac	В	3	9	18	3
2	C	10	7	3	2
8	D	5	11	9	7

Find the optimal assignment schedule.

17) A small project consists of seven activities for which the relevant data are given below:

Activity	Preceding Activities	Activity Duration		
Α	demographic transportable	4		
В	vleau2 - o	7		
С	4 4- 30	6		
D	A, B	£ 5		
E	A, B	2 47		
F	C, D, E	04 06 bnsn		
G	C, D, E	5		

i) Draw the network and find the project completion time.

5

ii) Calculate the total float for each of the activities.

5

- 18) Write short notes on:
 - a) Strategies used in game theory.

5

b) Maximin-Minimax principle.

SECTION - C

III. Answer any four of the following.

 $(4 \times 10 = 40)$

19) a) Compare between assignment problem and transportation problem.

n. 4

Solve the following linear programming problem by simplex method:
 Maximize z = 5x + 3y
 Subject to the constraints

$$x + y \le 2$$

$$5x + 2y \le 10$$

$$3x + 8y \le 12$$

$$x, y \ge 0$$

6

20) a) Solve the following transportation problem by MODI Method:

0

eni treta te	1	2	3	4	Supply
Read	21	16	25	13	11
e la 11	17	18	14	23	13
III	32	27	18	41	19
Demand	6	10	12	15	

b) Write the steps to find initial basic feasible solution by matrix minima method.

Л

21) a) Explain the North-West corner method of solving transportation problem.

b) Solve by matrix minima method and North-West corner method to obtain an initial basic feasible solution for the transportation problem:

		To			Supply	
x - v < 6	91	2	1	4	30	
From	3	3	2	1	50	
	4	- 2	5	9	20	
Demand	20	40	30	10		

22) a) Mention the types of assignment problem. Describe the methods of an assignment problem.

b) Solve the assignment problem given below:

	A	В	C	D
1	1	4	6	3
11	9	7	10	9
III	4	5	11	7
IV	8	7	8	5

23) Solve the following game, use dominance method to reduce the matrix. Write the strategies adopted by each player and value of game.

10

5

	oy sin			0.	Y ₄ B ₄	
X ₁	A ₁	4	4	2	-4	-6
X ₂	A	8	6	8	-4	0
X ₃	A ₃	10	2	4	10	12

24) a) Differentiate between PERT and CPM.

6

b) Calculate the earliest start, earliest finish, least start, least finish of each activity of the project given below:

1-2	1-3	2-4	2-5	3-4	4 - 5
8	4	10	2	5	3
	8	$\begin{vmatrix} 1-2 & 1-3 \\ 8 & 4 \end{vmatrix}$	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccccccccccccccccccccccccccccccc$