

IV Semester B.A./B.Sc. Examination, September/October 2022 (CBCS) (F + R) MATHEMATICS – IV

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all Parts.

PART - A

1. Answer any five questions.

 $(5 \times 2 = 10)$

- a) Show that every quotient group of an abelian group is abelian.
- b) If $f: G \to G'$ be an isomorphism then prove that f(e) = e' where e and e' are identities of G and G' respectively.
- c) Find a_0 in the Fourier series of $f(x) = x^2$ in $(-\pi, \pi)$.
- d) Show that $f(x, y) = x^3 + y^3 3xy + 1$ is minimum at (1, 1).
- e) Find the Laplace transform of sin5t cos2t.

f) Find the inverse Laplace transform of

g) Solve: $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$.

h) Show that the equation $(1 - x^2) y'' - 3xy' = 0$ is exact.

PART - B

Answer one full question.

 $(1 \times 15 = 15)$

- 2. a) Prove that a subgroup H of a group G is normal if and only if $gHg^{-1} \in H$, $\forall g, h \in G$.
 - b) If $f: G \to G'$ be a homomorphism from the group G into G' with Kernel K then prove that K is a normal subgroup of G.
 - c) If $f:(z_8, +_8) \to (z_2, +_2)$ is given by f(x) = r where r is the remainder when x is divided by 2. Show that f is a homomorphism.

OR

3. a) Prove that the product of any two normal subgroups of a group is again a normal subgroup.

b) If
$$S = \{1, 2, 3, 4\}, f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$$
 then find fog and gof.

c) State and prove fundamental theorem of homomorphism.

Answer any two full questions.

 $(2 \times 15 = 30)$

- 4. a) Find the Fourier series of f(x) = x, in $-\pi < x < \pi$.
 - b) Find the half range cosine series for the function $f(x) = (x 1)^2$ in the interval 0 < x < 1.
 - c) Obtain Taylor's expansion of excosy about the point $\left(1, \frac{\pi}{4}\right)$ upto second degree terms.

- 5. a) Find the extreme values of f(x, y) = xy (a x y) at the point $\begin{pmatrix} a \\ 3 \end{pmatrix}$.
 - b) Show that a rectangular solid of maximum volume which can be inscribed in a sphere is a cube.
 - c) Obtain the Fourier series of the function f(x) = |x| in $(-\pi, \pi)$.
- 6. a) Find L [e^{-t} sin4t + t cos2t].

b) Find
$$L^{-1} \left[\frac{s+2}{s^2 - 2s + 5} \right]$$
.

c) Express f(t) = $\begin{cases} 2t, & 0 < t < \pi \\ 1, & t > \pi \end{cases}$ in terms of unit step function and find L{f(t)}.

b) If f: G → G' be a homomorphism from the group RO to G' with Kernel K

- 7. a) Find L $\left[\frac{2s+3}{(s-1)(s+2)^2}\right]$. b) By using the convolution theorem find $L^{-1}\left[\frac{1}{(s+1)(s^2+1)}\right]$.
 - c) Find L⁻¹ $\left[\log\left(\frac{s^2+1}{s(s+1)}\right)\right]$.

PART - D

Answer one full question.

 $(1 \times 15 = 15)$

8. a) Solve:
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = \cos 3x$$
.

- b) $x^2y'' + xy' y = 2x^2$ (x > 0) given that $\frac{1}{x}$ is a part of its complementary function.
- c) Solve: $(D^2 + 4D + 4) y = e^{2x} e^{-2x}$.

9. a) Solve:
$$x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} = \sin(\log x)$$
.

b) Solve:
$$\frac{dx}{dt} = 7x - y$$
, $\frac{dy}{dt} = 2x + 5y$.

c) Solve by the method of variation of parameters $y'' + a^2y = secax$.

