

Sixth Semester B.Sc. Degree Examination, September/October 2022 (CBCS Scheme) PHYSICS

Paper – VII: Atomic, Molecular and Nuclear Physics

Time: 3 Hours

Instruction: Answer any five questions from each Part.

PART - A

Answer any five of the following. Each question carries eight marks.	(5×8=40)
Mention any two limitations of Bohr's atomic model. b) Explain Sommerfeld's relativistic atomic model.	(2+6)
2. a) State Pauli's exclusion principle.b) Obtain an expression for the maximum number electrons in a given of quantum number 'n'.	shell (2+6)
a) Explain quantum theory of Raman effect. b) Mention any two applications of Raman effect.	(6+2)
4. a) State any two assumptions behind Rutherford's theory of α-ray scattering.b) Obtain the relation between the impact parameter and the an scattering.	attering. gle of (2+6)
5. a) Derive an expression for the Q-value in alpha decay.b) Write a note on Geiger-Nuttal law.	(6+2)
6. a) What is Cyclotron?b) Describe the construction and working of the Cyclotron.	(1+7)
	P.T.O.

- 7. a) Explain the Quark model.
 - b) Mention any four properties of Quarks.

(4+4)

- 8. a) Define nuclear reaction rate.
- b) Distinguish between direct nuclear reaction and compound nuclear reaction.

PART – B

Solve any five of the following problems. Each problem carries four marks. (5x4=20)

- 9. In Stern-Gerlach experiment silver atoms travel a distance of 0.16 m in a non-homogeneous magnetic medium of field gradient 60Tm^{-1} . If the velocity of silver atoms is 410 ms⁻¹, calculate the separation between the two traces on a collector plate placed at a distance 0.55 m from the pole pieces of the magnet. Given : mass of silver atom = 1.79×10^{-25} kg and $\mu = 9.2 \times 10^{-24}$ JT⁻¹.
- 10. Calculate the magnetic field required to produce a Zeeman shift of 1.2 Å for a wavelength of spectral line 5000 Å. Given : $e/m = 1.76 \times 10^{11} \text{ C kg}^{-1}$.
- 11. Calculate the rotational constant and the diameter of CO molecule. Given : Moment of inertia of the molecule = 1.453×10^{-46} kg m² and reduced mass of CO molecule = 1.14×10^{-26} kg.
- 12. A count rate meter measured 5000 counts per minute. After 5 minutes it is 2000 counts per minute. Find the decay constant and half life.
- 13. Potassium-40 decays into calcium by β^- emission. Write down the equation representing this decay and find Q value of the decay. Given: mass of K^{40} = 39.96399 amu, and mass of Ca^{40} = 39.96259 amu, and 1 amu = 931 MeV.
- 14. When a beam of 10^{14} particles per unit area per second on a $_3\text{Li}^7$ target of thickness 0.004 mm, 3×10^8 neutrons were produced. Calculate the cross section for this reaction. Given : Density of Li = 500 kg m⁻³.

- 15. Calculate the Q-value of the reaction $_7Na^{14}$ (α , $p)_8O^{17}$ using the given data. Mass of He⁴ = 4.0026 amu, mass of Na¹⁴ = 14.0031 amu, mass of $_1H^1$ = 1.0078 amu, mass of O^{17} = 16.9994 amu and 1 amu = 931 MeV.
- 16. Find the threshold energy of the reaction $_3\text{Li}^7$ (p, n) $_4\text{Be}^7$ in MeV. Given : Mass of $\text{Li}^7 = 7.016005$ amu, mass of $\text{Be}^7 = 7.016931$ amu, mass of $_1\text{H}^1 = 1.0078$ amu, mass of $_0\text{n}^1 = 1.008665$ amu, 1 amu = 931 MeV.

PART - C

Answer any five of the following questions. Each carries 2 marks.

 $(5 \times 2 = 10)$

- 17. a) Does the electron in stationary orbits radiate energy? Explain.
 - b) Alpha particles have high ionizing power when compared to the Beta and Gamma particles. Explain.
 - c) Can radioactivity be controlled? Explain.
 - d) Is nuclear matter behave like a liquid? Explain.
 - e) Are nuclear energy levels equally spaced? Explain.
 - f) Is photon an elementary particle? Explain.
 - g) Hyperons and K-mesons are called as strange particles. Justify.
 - h) Is there conservation of charge in all interactions? Explain.

